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Abstract

The heat capacity of LaMnO; was measured by differential scanning calorimetry (DSC) in the (150-760) K range and by
alternative current calorimetry (ACC) in the (77-250) K range. The heat capacity curve showed two thermal anomaiies due to
a structural phase transition at 735 K and a magnetic transition at 140 K. The enthalpy and entropy changes accompanying the
magnetic transition are 220 J mol™' and 1.70 J K~"-mol™", whereas those for the higher temperature phase transition were
estimated to be 3.36 kJ mol ™' and 4.2 J K=" mol~". The non-transitional heat capacity of LaMnO; was calculated by multiple
regression analysis and is given by the following expressions.
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1. Introduction

LaMnOj; has an orthorhombically distorted perovs-
kite-type structure at room temperature and undergoes
a structural phase transition from the orthorhombic to
the rhombohedral structure at high temperatures. The
transition temperature depends on the oxygen non-
stoichiometry [1]. A magnetic transition from anti-
ferromagnetism to paramagnetism is observed near
140 K {2]. Also this transition temperature depend on
the oxygen non-stoichiometry. The Gibbs free energy
of decomposition or formation of LaMnOj; has been
reported by several authors [3-12]. The heat capacity
and the derived thermodynamic properties above
room temperature have been estimated by Yokokawa
et al. [13,14]. No experimental heat-capacity data has
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however been published. We report the results of an
experimental study of the heat capacity of LaMnQO; in
the (77-760) K range.

2. Experimental

LaMnO; was synthesized by a solid-state reaction
method. Starting materials of La,O; (Rare Metallic,
Japan, of 99.99% purity) and Mn,0; (Kojundo Chem.
Lab., Japan, of 99.9% purity) were mixed in an
equimolar ratio and pressed into a thin plate-shaped
sample. The plate was sintered at 1523 K for 3 days
under Ar flow. A single phase was identified by
powder X-ray diffractometry and the lattice para-
meters were a = 0.5739(1) nm, b = 0.7698(1) nm
c = 0.5538(1) nm, respectively. These values were
in good agreement with that reported by Norby
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et al. [15], i.e. a = 0.57046(2), b = 0.77029(4) and
¢ = 0.55353(3) nm. The degree of oxygen non-stoi-
chiometry x in LaMnO;, is below 0.01 in this pre-
paration method [16].

Two types of calorimeter were used for the mea-
surement of the heat capacity of LaMnOs.; the DSC-
220C and DSC-200 models of Seiko Electronic,
Japan, were used for the (140-480) and (300-780)
K temperature regions, respectively. ULVAC-2000
model ACC of Ulvac, Japan, was used in the (77-
250) K temperature range. The accuracy of measure-
ment with DSC was within £1.5% at high tempera-
tures, which was determined from the results of
standard Al,Os. Since data yielded by ACC are rela-
tive values of the heat capacity, it is necessary to
convert these relative values to the absolute values
of heat capacity. A temperature-dependent calibration
factor, X, was calculated from the temperature region
which overlapped with the regions studied by the DSC
method. The detailed procedures of the heat-capacity
measurement with DSC and ACC are described in a
previous paper [17-19].

3. Results and discussion

The heat capacity of LaMnOj; is shown in Fig. 1
together with the values estimated by Yokokawa et al.
[13]. In the heat capacity curve, two thermal anoma-
lies corresponding to phase transitions were observed
at 140 and 735 K, respectively. For the lower-tem-
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Fig. 1. The heat capacity of LaMnQO;. Solid and dashed lines
indicate the present work and that of Yokokawa et al. [13],
respectively.

perature magnetic transition, the transition tempera-
ture of the present result is 140 K. The present work is
in good agreement with the result by Matsumoto [2],
which gave Tians = 141 K.

The present work is in good agreement with that of
Yokokawa et al. [14] at near room temperature. The
agreement is not that good at higher temperatures.
Differences between the values of Yokokawa et al.
[14] and those of the present work are 3.5 J K~ mol™!
at 600 K and 12.3 J K~ " mol ! at 750 K, respectively.
This is due to the fact that the heat capacity reported by
Yokokawa et al. [13] was estimated by a modified
Neumann—Kopp law. Furthermore, the transition tem-
perature is 735 K in the present work, whereas 675 K
is reported by Yokokawa et al. [13]. This difference is
considered to be due to differences in oxygen non-
stoichiometry of the specimens, as the transition tem-
perature decreases with an increase of oxygen non-
stoichiometry.

For the lower temperature transition, a base line
shown as a solid line in Fig. 2 is obtained by multiple
regression analysis. From the area between peak and
the base line, the enthalpy and entropy changes
accompanying the magnetic transition at 140 K are
220 I mol ™! and 1.70 Y mol ™' K™, respectively. Cor-
responding enthalpy and entropy changes accompany-
ing the structural transition at 735 K were calculated
at 3.36 kJ mol ™' and 4.62 J mol~' K™, respectively.
Two non-transitional heat-capacity curves of LaMnO;
were estimated by multiple regression analysis as
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Fig. 2. The lower peak region of heat capacity of LaMnO;. Circle
and solid line indicate the observed value and the base line,
respectively.
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shown in the following, and the smoothed molar heat
capacity is tabulated in Table 1:

6.93 x 10*

R

+398 x 10772 — 3.31 x 1072732
(77 < T < 298)

Com = 2.82 + 0.874T —

Com = 96.73 + 5.36 x 107°T

8.82 x 10°
TQ

The higher approximation of the Debye function is
expressed by an equation such as

2
Cy = 3nR( — 9—D—1—>

On the other hand, the temperature-dependence equa-
tion of the heat capacity is generally written as follow.

(298 < T < 760)

C, Ea+bT—%=a<1 —g%) +bT
Combining the coefficients of 7° term from the two
foregoing equations, the calculated Debye tempera-
ture 427 K was derived, in comparison with 460 K
obtained from the heat capacity of LaggCag,MnO;
from 110 to 300 K by Tamura and Kuriyama [20].
Comparing these two results, the estimated Debye
temperature of L.aMnO; (430 K) is a reasonably good
derivation.
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